Isonic 3510 - УЗ дефектоскоп на фазированных решетках (ФР), сочетающий в себе функциональность ФР и обычного УЗК, а также TOFD в одно- и двухканальном режиме. Особенностью прибора является параллельная архитектура 32:32 с независимой настройкой излучающей и приемной апертуры, каждая из которых может содержать от 1 до 32 элементов (при использовании 1 ФР-преобразователя) и от 1 до 16 элементов при использовании 2 ФР-преобразователей. Элементы ФР-преобразователя, составляющие излучающую и приемную апертуру, могут быть как независимыми, так и совпадающими частично или полностью - это позволяет управлять углами ввода и типом излучаемой волны, фокусными расстояниями при излучении и приеме, выбирать тип принимаемой волны, обрабатывая отраженные и дифрагированные сигналы.
Каждый из каналов ISONIC 3510 оснащен собственным аналогово-цифровым преобразователем. Параллельное аналого-цифровое преобразование сигналов в каждом канале и моментальная цифровая фазировка реализуются для любой возможной комбинации и размера излучающей и приемной апертуры. Таким образом, фокальный закон любой сложности реализуется за один цикл излучения – приема, что обеспечивает максимально возможную скорость контроля.
ISONIC 3510 позволяет работать с однорядными, кольцевыми и двухрядными ФР-преобразователями.
Помимо ФР, ISONIC 3510 оснащен двумя независимыми каналами для проведения обычного УЗК и TOFD; каждый канал может работать в раздельном и совмещенном режимах.
Высокое качество ультразвуковых сигналов обеспечивается за счет генерации биполярного прямоугольного зондирующего импульса, который может перестраиваться в широком диапазоне по длительности и амплитуде. При этом обеспечиваются высокая крутизна фронтов и стабильность формы, а также применяется автоматическое адаптивное демпфирование, нейтрализующее паразитные составляющие излучаемых сигналов, что значительно улучшает соотношение «сигнал-шум» и разрешающую способность. Аналоговое усиление регулируется в диапазоне 0...100 дБ.
В дефектоскопе реализована уникальная технология True-To-Geometry-Imaging (TTGI), позволяющая построить работу с прибором следующим образом:
Все статистически значимые размеры объекта контроля вводятся в память прибора
На основании введенных данных прибор строит визуальное прозвучиваемое сечение объекта, позволяя выбрать оптимальное расположение преобразователей и осуществить трассировку ультразуковых лучей, обеспечивающих необходимую полноту контроля
Чувствительность и другие параметры настраиваются операторoм для центрального луча в выбранном диапазоне прозвучивания в режиме стандартного ультразвукового дефектоскопа с применением соответствующих стандартных образцов на основании требований к объекту, критериев отбраковки и пр.
Прибор автоматически формирует набор циклов излучения-приема (фокальных законов), которые, выполняясь последовательно один за другим, из одной точки расположения преобразователя на объекте, обеспечивают прозвучивание поперечного сечения в соответствии с выполненной трассировкой, причем каждый фокальный закон характеризуется индивидуально подстроенными усилением, углом ввода, задержкой и длительностью развертки, а также, при необходимости, кривой DAC
Прибор запоминает массив А-Сканов, получаемых в результате последовательного выполнения всех сформированных фокальных законов в быстродействующей буферной памяти (память фокальных законов), из которой передается в компьютер, генерирующий в реальном времени изображение сечения объекта с дефектами, расположенными в их реальных позициях
ФР-преобразователи, закрепленные в сканере, реализуют прозвучивание сварного шва – каждый со своей стороны, при этом поперечное сечение шва отображается путем наложения на шаблон и суперпозиции двух сектор скан-изображений, формируемых обоими ФР-преобразователями, либо одного из двух названных изображений. Способ отображения поперечного сечения может быть изменен в любой момент как во время сканирования, так и в режиме обработки данных.
Преимущества
2 независимых канала для работы с обычными преобразователями и реализации стандартных эхо-импульсного, зеркально-теневого, теневого методов контроля, а также технологии TOFD
Совмещенный и раздельный режимы работы для каждого из каналов
Параллельная и последовательная работа каналов
Биполярный прямоугольный зондирующий импульс с плавно регулируемыми длительностью и амплитудой (до 300 В) при гарантированной стабильности формы
Аналоговое усиление 100 дБ при полосе пропускания 0,2...25 МГц
16-разрядный аналогово-цифровой преобразователь с тактовой частотой 100 МГц и частотой оцифровки сигналов до 400 МГц
32-тактный цифровой фильтр с перестраиваемыми верхней и нижней границами диапазона
B-Скан остаточной толщины материала (профиль коррозии)
В-Скан для контроля с прямыми и наклонными преобразователями с коррекцией изображения в соответствии с углом ввода и отражениями от стенок
CB-Скан
TOFD
Стрип-диаграмма
Совместная работа с ФР-преобразователями
100%-я запись необработанных исходных А-Сканов при сканировании
Параллельная архитектура 32:32 с возможностью расширения до режима 64:64 или 128:128 при подключении ФР-преобразователей к прибору через миниатюрный внешний расширитель
2 терминала для подключения одного или двух ФР-преобразователей одновременно (1 X 32:32 или 2 X 16:16) без навесного разветвителя
Поддержка работы с ФР-преобразователями, несущими до 64 или 128 элементов, с одно- или двухрядной решеткой
Независимо организуемые излучающая и приемная апертура с параллельным аналого-цифровым преобразованием и моментальной цифровой фазировкой и суммированием принятых сигналов
Генератор-приемник для ФР-преобразователя с трассировкой лучей и редактором плана электронного сканирования для различных типов сварных швов простой и сложной конфигурации, валов и осей, болтов, шпинделей, комбинированных профилей и т.п.
Объем буферной памяти на ФР-плате: 8192 фокальных закона с независимой настройкой для каждого;
Биполярный прямоугольный зондирующий импульс с плавно регулируемыми длительностью и амплитудой (до 300 В) при гарантированной стабильности формы
Аналоговое усиление 100 дБ при полосе пропускания 0,2...25 МГц
16-разрядный аналого-цифровой преобразователь с тактовой частотой 100 МГц и частотой оцифровки сигналов до 400 МГц
32-тактный цифровой фильтр с перестраиваемыми верхней и нижней границами диапазона
Прозвучивание поперечного сечения способами линейного (В-Скан) или секторного сканирования (S-Скан) обычным образом, а также с учетом формы объекта контроля и переотражений в нем и визуализацией отражателей в реальных позициях
Прозвучивание материалов в горизонтальной плоскости (линейное и способом качающегося луча) с визуализацией СВ-Скан изображения
Одновременное сочетание нескольких схем прозвучивания (мультигруппное прозвучивание)
С-Скан (вид сверху) и проекционные изображения контролируемого материала в продольном (сбоку) и поперечном (с торца) направлениях при линейном сканировании с сохранением всех А-Сканов, формирование трехмерных изображений
Стрип-диаграмма
Контроль стыковых и продольных сварных швов с симметричной и несимметричной разделкой с одной (один ФР-преобразователь) или с двух сторон одновременно (пара ФР-преобразователей)
Реализация дополнительного TOFD-прозвучивания, записи и визуализации одновременно с эхо-импульсным контролем (секторное и / или линейное сканирование) при использовании одной и той же пары ФР-преобразователей
Автоматическая проверка контакта и обнаружение расслоений при контроле призматическими ФР-преобразователями
DAC- и ВРЧ-способы коррекции по ходу ультразвуковых лучей
Независимая от DAC и ВРЧ коррекция усиления по углу ввода с обеспечением равномерности чувствительности в прозвучиваемом сечении
Динамическая фокусировка
Формирование изображений способами синтезированной апертуры (SAFT, FMC, TFM)
Распознавание типа дефекта и определение истинных размеров трещин путем анализа отраженных и дифрагированных сигналов с или без преобразования типа волны
100%-я запись необработанных исходных А-Сканов при сканировании
Автоматическая сигнализация дефектов и генерация редактируемого списка дефектов по окончании сканирования
Отрасли применения
Дефектоскопия и толщина коррозии
Сварные швы
Валы и оси простой и сложной геометрии
Мостовые шпильки и болты
Буровые штанги
Турбинные лопатки
Композитные материалы
Примеры использования isonic 3510
Осмотр области радиуса угла изогнутого профиля из углеродного волокна Осмотр плоского стыкового шва Обнаружение вертикальной трещины в стыковом шве
Комплектация
Двухъядерный компьютер с частотой 1.6 ГГц, оперативной памятью 2 ГБ, жестким диском 120 ГБ (SSD) и ОС Win 7 Pro
ПО для комплексной обработки результатов и автоматической генерации документа контроля
Высокопрочный легкий карбоновый корпус IP65 (вентиляция и охлаждение не требуются)